| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * |
| * Bluetooth support for Intel PCIe devices |
| * |
| * Copyright (C) 2024 Intel Corporation |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/firmware.h> |
| #include <linux/pci.h> |
| #include <linux/wait.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| |
| #include <linux/unaligned.h> |
| |
| #include <net/bluetooth/bluetooth.h> |
| #include <net/bluetooth/hci_core.h> |
| |
| #include "btintel.h" |
| #include "btintel_pcie.h" |
| |
| #define VERSION "0.1" |
| |
| #define BTINTEL_PCI_DEVICE(dev, subdev) \ |
| .vendor = PCI_VENDOR_ID_INTEL, \ |
| .device = (dev), \ |
| .subvendor = PCI_ANY_ID, \ |
| .subdevice = (subdev), \ |
| .driver_data = 0 |
| |
| #define POLL_INTERVAL_US 10 |
| |
| /* Intel Bluetooth PCIe device id table */ |
| static const struct pci_device_id btintel_pcie_table[] = { |
| { BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) }, |
| { BTINTEL_PCI_DEVICE(0xE476, PCI_ANY_ID) }, |
| { 0 } |
| }; |
| MODULE_DEVICE_TABLE(pci, btintel_pcie_table); |
| |
| /* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */ |
| #define BTINTEL_PCIE_HCI_TYPE_LEN 4 |
| #define BTINTEL_PCIE_HCI_CMD_PKT 0x00000001 |
| #define BTINTEL_PCIE_HCI_ACL_PKT 0x00000002 |
| #define BTINTEL_PCIE_HCI_SCO_PKT 0x00000003 |
| #define BTINTEL_PCIE_HCI_EVT_PKT 0x00000004 |
| #define BTINTEL_PCIE_HCI_ISO_PKT 0x00000005 |
| |
| #define BTINTEL_PCIE_MAGIC_NUM 0xA5A5A5A5 |
| |
| #define BTINTEL_PCIE_BLZR_HWEXP_SIZE 1024 |
| #define BTINTEL_PCIE_BLZR_HWEXP_DMP_ADDR 0xB00A7C00 |
| |
| #define BTINTEL_PCIE_SCP_HWEXP_SIZE 4096 |
| #define BTINTEL_PCIE_SCP_HWEXP_DMP_ADDR 0xB030F800 |
| |
| #define BTINTEL_PCIE_MAGIC_NUM 0xA5A5A5A5 |
| |
| #define BTINTEL_PCIE_TRIGGER_REASON_USER_TRIGGER 0x17A2 |
| #define BTINTEL_PCIE_TRIGGER_REASON_FW_ASSERT 0x1E61 |
| |
| /* Alive interrupt context */ |
| enum { |
| BTINTEL_PCIE_ROM, |
| BTINTEL_PCIE_FW_DL, |
| BTINTEL_PCIE_HCI_RESET, |
| BTINTEL_PCIE_INTEL_HCI_RESET1, |
| BTINTEL_PCIE_INTEL_HCI_RESET2, |
| BTINTEL_PCIE_D0, |
| BTINTEL_PCIE_D3 |
| }; |
| |
| /* Structure for dbgc fragment buffer |
| * @buf_addr_lsb: LSB of the buffer's physical address |
| * @buf_addr_msb: MSB of the buffer's physical address |
| * @buf_size: Total size of the buffer |
| */ |
| struct btintel_pcie_dbgc_ctxt_buf { |
| u32 buf_addr_lsb; |
| u32 buf_addr_msb; |
| u32 buf_size; |
| }; |
| |
| /* Structure for dbgc fragment |
| * @magic_num: 0XA5A5A5A5 |
| * @ver: For Driver-FW compatibility |
| * @total_size: Total size of the payload debug info |
| * @num_buf: Num of allocated debug bufs |
| * @bufs: All buffer's addresses and sizes |
| */ |
| struct btintel_pcie_dbgc_ctxt { |
| u32 magic_num; |
| u32 ver; |
| u32 total_size; |
| u32 num_buf; |
| struct btintel_pcie_dbgc_ctxt_buf bufs[BTINTEL_PCIE_DBGC_BUFFER_COUNT]; |
| }; |
| |
| /* This function initializes the memory for DBGC buffers and formats the |
| * DBGC fragment which consists header info and DBGC buffer's LSB, MSB and |
| * size as the payload |
| */ |
| static int btintel_pcie_setup_dbgc(struct btintel_pcie_data *data) |
| { |
| struct btintel_pcie_dbgc_ctxt db_frag; |
| struct data_buf *buf; |
| int i; |
| |
| data->dbgc.count = BTINTEL_PCIE_DBGC_BUFFER_COUNT; |
| data->dbgc.bufs = devm_kcalloc(&data->pdev->dev, data->dbgc.count, |
| sizeof(*buf), GFP_KERNEL); |
| if (!data->dbgc.bufs) |
| return -ENOMEM; |
| |
| data->dbgc.buf_v_addr = dmam_alloc_coherent(&data->pdev->dev, |
| data->dbgc.count * |
| BTINTEL_PCIE_DBGC_BUFFER_SIZE, |
| &data->dbgc.buf_p_addr, |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!data->dbgc.buf_v_addr) |
| return -ENOMEM; |
| |
| data->dbgc.frag_v_addr = dmam_alloc_coherent(&data->pdev->dev, |
| sizeof(struct btintel_pcie_dbgc_ctxt), |
| &data->dbgc.frag_p_addr, |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!data->dbgc.frag_v_addr) |
| return -ENOMEM; |
| |
| data->dbgc.frag_size = sizeof(struct btintel_pcie_dbgc_ctxt); |
| |
| db_frag.magic_num = BTINTEL_PCIE_MAGIC_NUM; |
| db_frag.ver = BTINTEL_PCIE_DBGC_FRAG_VERSION; |
| db_frag.total_size = BTINTEL_PCIE_DBGC_FRAG_PAYLOAD_SIZE; |
| db_frag.num_buf = BTINTEL_PCIE_DBGC_FRAG_BUFFER_COUNT; |
| |
| for (i = 0; i < data->dbgc.count; i++) { |
| buf = &data->dbgc.bufs[i]; |
| buf->data_p_addr = data->dbgc.buf_p_addr + i * BTINTEL_PCIE_DBGC_BUFFER_SIZE; |
| buf->data = data->dbgc.buf_v_addr + i * BTINTEL_PCIE_DBGC_BUFFER_SIZE; |
| db_frag.bufs[i].buf_addr_lsb = lower_32_bits(buf->data_p_addr); |
| db_frag.bufs[i].buf_addr_msb = upper_32_bits(buf->data_p_addr); |
| db_frag.bufs[i].buf_size = BTINTEL_PCIE_DBGC_BUFFER_SIZE; |
| } |
| |
| memcpy(data->dbgc.frag_v_addr, &db_frag, sizeof(db_frag)); |
| return 0; |
| } |
| |
| static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia, |
| u16 queue_num) |
| { |
| bt_dev_dbg(hdev, "IA: %s: tr-h:%02u tr-t:%02u cr-h:%02u cr-t:%02u", |
| queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ", |
| ia->tr_hia[queue_num], ia->tr_tia[queue_num], |
| ia->cr_hia[queue_num], ia->cr_tia[queue_num]); |
| } |
| |
| static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1, |
| u16 index) |
| { |
| bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x", |
| index, urbd1->frbd_tag, urbd1->status, urbd1->fixed); |
| } |
| |
| static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry) |
| { |
| u8 queue = entry->entry; |
| struct msix_entry *entries = entry - queue; |
| |
| return container_of(entries, struct btintel_pcie_data, msix_entries[0]); |
| } |
| |
| /* Set the doorbell for TXQ to notify the device that @index (actually index-1) |
| * of the TFD is updated and ready to transmit. |
| */ |
| static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index) |
| { |
| u32 val; |
| |
| val = index; |
| val |= (BTINTEL_PCIE_TX_DB_VEC << 16); |
| |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val); |
| } |
| |
| /* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer |
| * descriptor) with the data length and the DMA address of the data buffer. |
| */ |
| static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index, |
| struct sk_buff *skb) |
| { |
| struct data_buf *buf; |
| struct tfd *tfd; |
| |
| tfd = &txq->tfds[tfd_index]; |
| memset(tfd, 0, sizeof(*tfd)); |
| |
| buf = &txq->bufs[tfd_index]; |
| |
| tfd->size = skb->len; |
| tfd->addr = buf->data_p_addr; |
| |
| /* Copy the outgoing data to DMA buffer */ |
| memcpy(buf->data, skb->data, tfd->size); |
| } |
| |
| static int btintel_pcie_send_sync(struct btintel_pcie_data *data, |
| struct sk_buff *skb) |
| { |
| int ret; |
| u16 tfd_index; |
| struct txq *txq = &data->txq; |
| |
| tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM]; |
| |
| if (tfd_index > txq->count) |
| return -ERANGE; |
| |
| /* Prepare for TX. It updates the TFD with the length of data and |
| * address of the DMA buffer, and copy the data to the DMA buffer |
| */ |
| btintel_pcie_prepare_tx(txq, tfd_index, skb); |
| |
| tfd_index = (tfd_index + 1) % txq->count; |
| data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index; |
| |
| /* Arm wait event condition */ |
| data->tx_wait_done = false; |
| |
| /* Set the doorbell to notify the device */ |
| btintel_pcie_set_tx_db(data, tfd_index); |
| |
| /* Wait for the complete interrupt - URBD0 */ |
| ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done, |
| msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS)); |
| if (!ret) |
| return -ETIME; |
| |
| return 0; |
| } |
| |
| /* Set the doorbell for RXQ to notify the device that @index (actually index-1) |
| * is available to receive the data |
| */ |
| static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index) |
| { |
| u32 val; |
| |
| val = index; |
| val |= (BTINTEL_PCIE_RX_DB_VEC << 16); |
| |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val); |
| } |
| |
| /* Update the FRBD (free buffer descriptor) with the @frbd_index and the |
| * DMA address of the free buffer. |
| */ |
| static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index) |
| { |
| struct data_buf *buf; |
| struct frbd *frbd; |
| |
| /* Get the buffer of the FRBD for DMA */ |
| buf = &rxq->bufs[frbd_index]; |
| |
| frbd = &rxq->frbds[frbd_index]; |
| memset(frbd, 0, sizeof(*frbd)); |
| |
| /* Update FRBD */ |
| frbd->tag = frbd_index; |
| frbd->addr = buf->data_p_addr; |
| } |
| |
| static int btintel_pcie_submit_rx(struct btintel_pcie_data *data) |
| { |
| u16 frbd_index; |
| struct rxq *rxq = &data->rxq; |
| |
| frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM]; |
| |
| if (frbd_index > rxq->count) |
| return -ERANGE; |
| |
| /* Prepare for RX submit. It updates the FRBD with the address of DMA |
| * buffer |
| */ |
| btintel_pcie_prepare_rx(rxq, frbd_index); |
| |
| frbd_index = (frbd_index + 1) % rxq->count; |
| data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index; |
| ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM); |
| |
| /* Set the doorbell to notify the device */ |
| btintel_pcie_set_rx_db(data, frbd_index); |
| |
| return 0; |
| } |
| |
| static int btintel_pcie_start_rx(struct btintel_pcie_data *data) |
| { |
| int i, ret; |
| |
| for (i = 0; i < BTINTEL_PCIE_RX_MAX_QUEUE; i++) { |
| ret = btintel_pcie_submit_rx(data); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void btintel_pcie_reset_ia(struct btintel_pcie_data *data) |
| { |
| memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); |
| memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); |
| memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); |
| memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES); |
| } |
| |
| static int btintel_pcie_reset_bt(struct btintel_pcie_data *data) |
| { |
| u32 reg; |
| int retry = 3; |
| |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); |
| |
| reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA | |
| BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT | |
| BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT); |
| reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON; |
| |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg); |
| |
| do { |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); |
| if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_STS) |
| break; |
| usleep_range(10000, 12000); |
| |
| } while (--retry > 0); |
| usleep_range(10000, 12000); |
| |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); |
| |
| reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA | |
| BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT | |
| BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT); |
| reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET; |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg); |
| usleep_range(10000, 12000); |
| |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); |
| bt_dev_dbg(data->hdev, "csr register after reset: 0x%8.8x", reg); |
| |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG); |
| |
| /* If shared hardware reset is success then boot stage register shall be |
| * set to 0 |
| */ |
| return reg == 0 ? 0 : -ENODEV; |
| } |
| |
| static void btintel_pcie_mac_init(struct btintel_pcie_data *data) |
| { |
| u32 reg; |
| |
| /* Set MAC_INIT bit to start primary bootloader */ |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); |
| reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT | |
| BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON | |
| BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET); |
| reg |= (BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA | |
| BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT); |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg); |
| } |
| |
| static int btintel_pcie_add_dmp_data(struct hci_dev *hdev, const void *data, int size) |
| { |
| struct sk_buff *skb; |
| int err; |
| |
| skb = alloc_skb(size, GFP_ATOMIC); |
| if (!skb) |
| return -ENOMEM; |
| |
| skb_put_data(skb, data, size); |
| err = hci_devcd_append(hdev, skb); |
| if (err) { |
| bt_dev_err(hdev, "Failed to append data in the coredump"); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int btintel_pcie_get_mac_access(struct btintel_pcie_data *data) |
| { |
| u32 reg; |
| int retry = 15; |
| |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); |
| |
| reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS; |
| reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ; |
| if ((reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS) == 0) |
| reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ; |
| |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg); |
| |
| do { |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); |
| if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS) |
| return 0; |
| /* Need delay here for Target Access harwdware to settle down*/ |
| usleep_range(1000, 1200); |
| |
| } while (--retry > 0); |
| |
| return -ETIME; |
| } |
| |
| static void btintel_pcie_release_mac_access(struct btintel_pcie_data *data) |
| { |
| u32 reg; |
| |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); |
| |
| if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ) |
| reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_REQ; |
| |
| if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS) |
| reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_STOP_MAC_ACCESS_DIS; |
| |
| if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ) |
| reg &= ~BTINTEL_PCIE_CSR_FUNC_CTRL_XTAL_CLK_REQ; |
| |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg); |
| } |
| |
| static void btintel_pcie_copy_tlv(struct sk_buff *skb, enum btintel_pcie_tlv_type type, |
| void *data, int size) |
| { |
| struct intel_tlv *tlv; |
| |
| tlv = skb_put(skb, sizeof(*tlv) + size); |
| tlv->type = type; |
| tlv->len = size; |
| memcpy(tlv->val, data, tlv->len); |
| } |
| |
| static int btintel_pcie_read_dram_buffers(struct btintel_pcie_data *data) |
| { |
| u32 offset, prev_size, wr_ptr_status, dump_size, i; |
| struct btintel_pcie_dbgc *dbgc = &data->dbgc; |
| u8 buf_idx, dump_time_len, fw_build; |
| struct hci_dev *hdev = data->hdev; |
| struct intel_tlv *tlv; |
| struct timespec64 now; |
| struct sk_buff *skb; |
| struct tm tm_now; |
| char buf[256]; |
| u16 hdr_len; |
| int ret; |
| |
| wr_ptr_status = btintel_pcie_rd_dev_mem(data, BTINTEL_PCIE_DBGC_CUR_DBGBUFF_STATUS); |
| offset = wr_ptr_status & BTINTEL_PCIE_DBG_OFFSET_BIT_MASK; |
| |
| buf_idx = BTINTEL_PCIE_DBGC_DBG_BUF_IDX(wr_ptr_status); |
| if (buf_idx > dbgc->count) { |
| bt_dev_warn(hdev, "Buffer index is invalid"); |
| return -EINVAL; |
| } |
| |
| prev_size = buf_idx * BTINTEL_PCIE_DBGC_BUFFER_SIZE; |
| if (prev_size + offset >= prev_size) |
| data->dmp_hdr.write_ptr = prev_size + offset; |
| else |
| return -EINVAL; |
| |
| ktime_get_real_ts64(&now); |
| time64_to_tm(now.tv_sec, 0, &tm_now); |
| dump_time_len = snprintf(buf, sizeof(buf), "Dump Time: %02d-%02d-%04ld %02d:%02d:%02d", |
| tm_now.tm_mday, tm_now.tm_mon + 1, tm_now.tm_year + 1900, |
| tm_now.tm_hour, tm_now.tm_min, tm_now.tm_sec); |
| |
| fw_build = snprintf(buf + dump_time_len, sizeof(buf) - dump_time_len, |
| "Firmware Timestamp: Year %u WW %02u buildtype %u build %u", |
| 2000 + (data->dmp_hdr.fw_timestamp >> 8), |
| data->dmp_hdr.fw_timestamp & 0xff, data->dmp_hdr.fw_build_type, |
| data->dmp_hdr.fw_build_num); |
| |
| hdr_len = sizeof(*tlv) + sizeof(data->dmp_hdr.cnvi_bt) + |
| sizeof(*tlv) + sizeof(data->dmp_hdr.write_ptr) + |
| sizeof(*tlv) + sizeof(data->dmp_hdr.wrap_ctr) + |
| sizeof(*tlv) + sizeof(data->dmp_hdr.trigger_reason) + |
| sizeof(*tlv) + sizeof(data->dmp_hdr.fw_git_sha1) + |
| sizeof(*tlv) + sizeof(data->dmp_hdr.cnvr_top) + |
| sizeof(*tlv) + sizeof(data->dmp_hdr.cnvi_top) + |
| sizeof(*tlv) + dump_time_len + |
| sizeof(*tlv) + fw_build; |
| |
| dump_size = hdr_len + sizeof(hdr_len); |
| |
| skb = alloc_skb(dump_size, GFP_KERNEL); |
| if (!skb) |
| return -ENOMEM; |
| |
| /* Add debug buffers data length to dump size */ |
| dump_size += BTINTEL_PCIE_DBGC_BUFFER_SIZE * dbgc->count; |
| |
| ret = hci_devcd_init(hdev, dump_size); |
| if (ret) { |
| bt_dev_err(hdev, "Failed to init devcoredump, err %d", ret); |
| kfree_skb(skb); |
| return ret; |
| } |
| |
| skb_put_data(skb, &hdr_len, sizeof(hdr_len)); |
| |
| btintel_pcie_copy_tlv(skb, BTINTEL_CNVI_BT, &data->dmp_hdr.cnvi_bt, |
| sizeof(data->dmp_hdr.cnvi_bt)); |
| |
| btintel_pcie_copy_tlv(skb, BTINTEL_WRITE_PTR, &data->dmp_hdr.write_ptr, |
| sizeof(data->dmp_hdr.write_ptr)); |
| |
| data->dmp_hdr.wrap_ctr = btintel_pcie_rd_dev_mem(data, |
| BTINTEL_PCIE_DBGC_DBGBUFF_WRAP_ARND); |
| |
| btintel_pcie_copy_tlv(skb, BTINTEL_WRAP_CTR, &data->dmp_hdr.wrap_ctr, |
| sizeof(data->dmp_hdr.wrap_ctr)); |
| |
| btintel_pcie_copy_tlv(skb, BTINTEL_TRIGGER_REASON, &data->dmp_hdr.trigger_reason, |
| sizeof(data->dmp_hdr.trigger_reason)); |
| |
| btintel_pcie_copy_tlv(skb, BTINTEL_FW_SHA, &data->dmp_hdr.fw_git_sha1, |
| sizeof(data->dmp_hdr.fw_git_sha1)); |
| |
| btintel_pcie_copy_tlv(skb, BTINTEL_CNVR_TOP, &data->dmp_hdr.cnvr_top, |
| sizeof(data->dmp_hdr.cnvr_top)); |
| |
| btintel_pcie_copy_tlv(skb, BTINTEL_CNVI_TOP, &data->dmp_hdr.cnvi_top, |
| sizeof(data->dmp_hdr.cnvi_top)); |
| |
| btintel_pcie_copy_tlv(skb, BTINTEL_DUMP_TIME, buf, dump_time_len); |
| |
| btintel_pcie_copy_tlv(skb, BTINTEL_FW_BUILD, buf + dump_time_len, fw_build); |
| |
| ret = hci_devcd_append(hdev, skb); |
| if (ret) |
| goto exit_err; |
| |
| for (i = 0; i < dbgc->count; i++) { |
| ret = btintel_pcie_add_dmp_data(hdev, dbgc->bufs[i].data, |
| BTINTEL_PCIE_DBGC_BUFFER_SIZE); |
| if (ret) |
| break; |
| } |
| |
| exit_err: |
| hci_devcd_complete(hdev); |
| return ret; |
| } |
| |
| static void btintel_pcie_dump_traces(struct hci_dev *hdev) |
| { |
| struct btintel_pcie_data *data = hci_get_drvdata(hdev); |
| int ret = 0; |
| |
| ret = btintel_pcie_get_mac_access(data); |
| if (ret) { |
| bt_dev_err(hdev, "Failed to get mac access: (%d)", ret); |
| return; |
| } |
| |
| ret = btintel_pcie_read_dram_buffers(data); |
| |
| btintel_pcie_release_mac_access(data); |
| |
| if (ret) |
| bt_dev_err(hdev, "Failed to dump traces: (%d)", ret); |
| } |
| |
| static void btintel_pcie_dump_hdr(struct hci_dev *hdev, struct sk_buff *skb) |
| { |
| struct btintel_pcie_data *data = hci_get_drvdata(hdev); |
| u16 len = skb->len; |
| u16 *hdrlen_ptr; |
| char buf[80]; |
| |
| hdrlen_ptr = skb_put_zero(skb, sizeof(len)); |
| |
| snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n", |
| INTEL_HW_VARIANT(data->dmp_hdr.cnvi_bt)); |
| skb_put_data(skb, buf, strlen(buf)); |
| |
| snprintf(buf, sizeof(buf), "Firmware Build Number: %u\n", |
| data->dmp_hdr.fw_build_num); |
| skb_put_data(skb, buf, strlen(buf)); |
| |
| snprintf(buf, sizeof(buf), "Driver: %s\n", data->dmp_hdr.driver_name); |
| skb_put_data(skb, buf, strlen(buf)); |
| |
| snprintf(buf, sizeof(buf), "Vendor: Intel\n"); |
| skb_put_data(skb, buf, strlen(buf)); |
| |
| *hdrlen_ptr = skb->len - len; |
| } |
| |
| static void btintel_pcie_dump_notify(struct hci_dev *hdev, int state) |
| { |
| struct btintel_pcie_data *data = hci_get_drvdata(hdev); |
| |
| switch (state) { |
| case HCI_DEVCOREDUMP_IDLE: |
| data->dmp_hdr.state = HCI_DEVCOREDUMP_IDLE; |
| break; |
| case HCI_DEVCOREDUMP_ACTIVE: |
| data->dmp_hdr.state = HCI_DEVCOREDUMP_ACTIVE; |
| break; |
| case HCI_DEVCOREDUMP_TIMEOUT: |
| case HCI_DEVCOREDUMP_ABORT: |
| case HCI_DEVCOREDUMP_DONE: |
| data->dmp_hdr.state = HCI_DEVCOREDUMP_IDLE; |
| break; |
| } |
| } |
| |
| /* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in |
| * BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with |
| * BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0. |
| * Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage |
| * from BTINTEL_PCIE_CSR_BOOT_STAGE_REG. |
| */ |
| static int btintel_pcie_enable_bt(struct btintel_pcie_data *data) |
| { |
| int err; |
| u32 reg; |
| |
| data->gp0_received = false; |
| |
| /* Update the DMA address of CI struct to CSR */ |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG, |
| data->ci_p_addr & 0xffffffff); |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG, |
| (u64)data->ci_p_addr >> 32); |
| |
| /* Reset the cached value of boot stage. it is updated by the MSI-X |
| * gp0 interrupt handler. |
| */ |
| data->boot_stage_cache = 0x0; |
| |
| /* Set MAC_INIT bit to start primary bootloader */ |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); |
| reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT | |
| BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON | |
| BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET); |
| reg |= (BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA | |
| BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT); |
| |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg); |
| |
| /* MAC is ready. Enable BT FUNC */ |
| btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, |
| BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT); |
| |
| btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG); |
| |
| /* wait for interrupt from the device after booting up to primary |
| * bootloader. |
| */ |
| data->alive_intr_ctxt = BTINTEL_PCIE_ROM; |
| err = wait_event_timeout(data->gp0_wait_q, data->gp0_received, |
| msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS)); |
| if (!err) |
| return -ETIME; |
| |
| /* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */ |
| if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| static inline bool btintel_pcie_in_op(struct btintel_pcie_data *data) |
| { |
| return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW; |
| } |
| |
| static inline bool btintel_pcie_in_iml(struct btintel_pcie_data *data) |
| { |
| return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML && |
| !(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW); |
| } |
| |
| static inline bool btintel_pcie_in_d3(struct btintel_pcie_data *data) |
| { |
| return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY; |
| } |
| |
| static inline bool btintel_pcie_in_d0(struct btintel_pcie_data *data) |
| { |
| return !(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY); |
| } |
| |
| static void btintel_pcie_wr_sleep_cntrl(struct btintel_pcie_data *data, |
| u32 dxstate) |
| { |
| bt_dev_dbg(data->hdev, "writing sleep_ctl_reg: 0x%8.8x", dxstate); |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_IPC_SLEEP_CTL_REG, dxstate); |
| } |
| |
| static inline char *btintel_pcie_alivectxt_state2str(u32 alive_intr_ctxt) |
| { |
| switch (alive_intr_ctxt) { |
| case BTINTEL_PCIE_ROM: |
| return "rom"; |
| case BTINTEL_PCIE_FW_DL: |
| return "fw_dl"; |
| case BTINTEL_PCIE_D0: |
| return "d0"; |
| case BTINTEL_PCIE_D3: |
| return "d3"; |
| case BTINTEL_PCIE_HCI_RESET: |
| return "hci_reset"; |
| case BTINTEL_PCIE_INTEL_HCI_RESET1: |
| return "intel_reset1"; |
| case BTINTEL_PCIE_INTEL_HCI_RESET2: |
| return "intel_reset2"; |
| default: |
| return "unknown"; |
| } |
| } |
| |
| static int btintel_pcie_read_device_mem(struct btintel_pcie_data *data, |
| void *buf, u32 dev_addr, int len) |
| { |
| int err; |
| u32 *val = buf; |
| |
| /* Get device mac access */ |
| err = btintel_pcie_get_mac_access(data); |
| if (err) { |
| bt_dev_err(data->hdev, "Failed to get mac access %d", err); |
| return err; |
| } |
| |
| for (; len > 0; len -= 4, dev_addr += 4, val++) |
| *val = btintel_pcie_rd_dev_mem(data, dev_addr); |
| |
| btintel_pcie_release_mac_access(data); |
| |
| return 0; |
| } |
| |
| /* This function handles the MSI-X interrupt for gp0 cause (bit 0 in |
| * BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response. |
| */ |
| static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data) |
| { |
| bool submit_rx, signal_waitq; |
| u32 reg, old_ctxt; |
| |
| /* This interrupt is for three different causes and it is not easy to |
| * know what causes the interrupt. So, it compares each register value |
| * with cached value and update it before it wake up the queue. |
| */ |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG); |
| if (reg != data->boot_stage_cache) |
| data->boot_stage_cache = reg; |
| |
| bt_dev_dbg(data->hdev, "Alive context: %s old_boot_stage: 0x%8.8x new_boot_stage: 0x%8.8x", |
| btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt), |
| data->boot_stage_cache, reg); |
| reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG); |
| if (reg != data->img_resp_cache) |
| data->img_resp_cache = reg; |
| |
| data->gp0_received = true; |
| |
| old_ctxt = data->alive_intr_ctxt; |
| submit_rx = false; |
| signal_waitq = false; |
| |
| switch (data->alive_intr_ctxt) { |
| case BTINTEL_PCIE_ROM: |
| data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL; |
| signal_waitq = true; |
| break; |
| case BTINTEL_PCIE_FW_DL: |
| /* Error case is already handled. Ideally control shall not |
| * reach here |
| */ |
| break; |
| case BTINTEL_PCIE_INTEL_HCI_RESET1: |
| if (btintel_pcie_in_op(data)) { |
| submit_rx = true; |
| break; |
| } |
| |
| if (btintel_pcie_in_iml(data)) { |
| submit_rx = true; |
| data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL; |
| break; |
| } |
| break; |
| case BTINTEL_PCIE_INTEL_HCI_RESET2: |
| if (btintel_test_and_clear_flag(data->hdev, INTEL_WAIT_FOR_D0)) { |
| btintel_wake_up_flag(data->hdev, INTEL_WAIT_FOR_D0); |
| data->alive_intr_ctxt = BTINTEL_PCIE_D0; |
| } |
| break; |
| case BTINTEL_PCIE_D0: |
| if (btintel_pcie_in_d3(data)) { |
| data->alive_intr_ctxt = BTINTEL_PCIE_D3; |
| signal_waitq = true; |
| break; |
| } |
| break; |
| case BTINTEL_PCIE_D3: |
| if (btintel_pcie_in_d0(data)) { |
| data->alive_intr_ctxt = BTINTEL_PCIE_D0; |
| submit_rx = true; |
| signal_waitq = true; |
| break; |
| } |
| break; |
| case BTINTEL_PCIE_HCI_RESET: |
| data->alive_intr_ctxt = BTINTEL_PCIE_D0; |
| submit_rx = true; |
| signal_waitq = true; |
| break; |
| default: |
| bt_dev_err(data->hdev, "Unknown state: 0x%2.2x", |
| data->alive_intr_ctxt); |
| break; |
| } |
| |
| if (submit_rx) { |
| btintel_pcie_reset_ia(data); |
| btintel_pcie_start_rx(data); |
| } |
| |
| if (signal_waitq) { |
| bt_dev_dbg(data->hdev, "wake up gp0 wait_q"); |
| wake_up(&data->gp0_wait_q); |
| } |
| |
| if (old_ctxt != data->alive_intr_ctxt) |
| bt_dev_dbg(data->hdev, "alive context changed: %s -> %s", |
| btintel_pcie_alivectxt_state2str(old_ctxt), |
| btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt)); |
| } |
| |
| /* This function handles the MSX-X interrupt for rx queue 0 which is for TX |
| */ |
| static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data) |
| { |
| u16 cr_tia, cr_hia; |
| struct txq *txq; |
| struct urbd0 *urbd0; |
| |
| cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM]; |
| cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM]; |
| |
| if (cr_tia == cr_hia) |
| return; |
| |
| txq = &data->txq; |
| |
| while (cr_tia != cr_hia) { |
| data->tx_wait_done = true; |
| wake_up(&data->tx_wait_q); |
| |
| urbd0 = &txq->urbd0s[cr_tia]; |
| |
| if (urbd0->tfd_index > txq->count) |
| return; |
| |
| cr_tia = (cr_tia + 1) % txq->count; |
| data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia; |
| ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM); |
| } |
| } |
| |
| static int btintel_pcie_recv_event(struct hci_dev *hdev, struct sk_buff *skb) |
| { |
| struct hci_event_hdr *hdr = (void *)skb->data; |
| const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 }; |
| struct btintel_pcie_data *data = hci_get_drvdata(hdev); |
| |
| if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff && |
| hdr->plen > 0) { |
| const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1; |
| unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1; |
| |
| if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
| switch (skb->data[2]) { |
| case 0x02: |
| /* When switching to the operational firmware |
| * the device sends a vendor specific event |
| * indicating that the bootup completed. |
| */ |
| btintel_bootup(hdev, ptr, len); |
| |
| /* If bootup event is from operational image, |
| * driver needs to write sleep control register to |
| * move into D0 state |
| */ |
| if (btintel_pcie_in_op(data)) { |
| btintel_pcie_wr_sleep_cntrl(data, BTINTEL_PCIE_STATE_D0); |
| data->alive_intr_ctxt = BTINTEL_PCIE_INTEL_HCI_RESET2; |
| kfree_skb(skb); |
| return 0; |
| } |
| |
| if (btintel_pcie_in_iml(data)) { |
| /* In case of IML, there is no concept |
| * of D0 transition. Just mimic as if |
| * IML moved to D0 by clearing INTEL_WAIT_FOR_D0 |
| * bit and waking up the task waiting on |
| * INTEL_WAIT_FOR_D0. This is required |
| * as intel_boot() is common function for |
| * both IML and OP image loading. |
| */ |
| if (btintel_test_and_clear_flag(data->hdev, |
| INTEL_WAIT_FOR_D0)) |
| btintel_wake_up_flag(data->hdev, |
| INTEL_WAIT_FOR_D0); |
| } |
| kfree_skb(skb); |
| return 0; |
| case 0x06: |
| /* When the firmware loading completes the |
| * device sends out a vendor specific event |
| * indicating the result of the firmware |
| * loading. |
| */ |
| btintel_secure_send_result(hdev, ptr, len); |
| kfree_skb(skb); |
| return 0; |
| } |
| } |
| |
| /* Handle all diagnostics events separately. May still call |
| * hci_recv_frame. |
| */ |
| if (len >= sizeof(diagnostics_hdr) && |
| memcmp(&skb->data[2], diagnostics_hdr, |
| sizeof(diagnostics_hdr)) == 0) { |
| return btintel_diagnostics(hdev, skb); |
| } |
| |
| /* This is a debug event that comes from IML and OP image when it |
| * starts execution. There is no need pass this event to stack. |
| */ |
| if (skb->data[2] == 0x97) { |
| hci_recv_diag(hdev, skb); |
| return 0; |
| } |
| } |
| |
| return hci_recv_frame(hdev, skb); |
| } |
| /* Process the received rx data |
| * It check the frame header to identify the data type and create skb |
| * and calling HCI API |
| */ |
| static int btintel_pcie_recv_frame(struct btintel_pcie_data *data, |
| struct sk_buff *skb) |
| { |
| int ret; |
| u8 pkt_type; |
| u16 plen; |
| u32 pcie_pkt_type; |
| void *pdata; |
| struct hci_dev *hdev = data->hdev; |
| |
| spin_lock(&data->hci_rx_lock); |
| |
| /* The first 4 bytes indicates the Intel PCIe specific packet type */ |
| pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN); |
| if (!pdata) { |
| bt_dev_err(hdev, "Corrupted packet received"); |
| ret = -EILSEQ; |
| goto exit_error; |
| } |
| |
| pcie_pkt_type = get_unaligned_le32(pdata); |
| |
| switch (pcie_pkt_type) { |
| case BTINTEL_PCIE_HCI_ACL_PKT: |
| if (skb->len >= HCI_ACL_HDR_SIZE) { |
| plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen); |
| pkt_type = HCI_ACLDATA_PKT; |
| } else { |
| bt_dev_err(hdev, "ACL packet is too short"); |
| ret = -EILSEQ; |
| goto exit_error; |
| } |
| break; |
| |
| case BTINTEL_PCIE_HCI_SCO_PKT: |
| if (skb->len >= HCI_SCO_HDR_SIZE) { |
| plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen; |
| pkt_type = HCI_SCODATA_PKT; |
| } else { |
| bt_dev_err(hdev, "SCO packet is too short"); |
| ret = -EILSEQ; |
| goto exit_error; |
| } |
| break; |
| |
| case BTINTEL_PCIE_HCI_EVT_PKT: |
| if (skb->len >= HCI_EVENT_HDR_SIZE) { |
| plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen; |
| pkt_type = HCI_EVENT_PKT; |
| } else { |
| bt_dev_err(hdev, "Event packet is too short"); |
| ret = -EILSEQ; |
| goto exit_error; |
| } |
| break; |
| |
| case BTINTEL_PCIE_HCI_ISO_PKT: |
| if (skb->len >= HCI_ISO_HDR_SIZE) { |
| plen = HCI_ISO_HDR_SIZE + __le16_to_cpu(hci_iso_hdr(skb)->dlen); |
| pkt_type = HCI_ISODATA_PKT; |
| } else { |
| bt_dev_err(hdev, "ISO packet is too short"); |
| ret = -EILSEQ; |
| goto exit_error; |
| } |
| break; |
| |
| default: |
| bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x", |
| pcie_pkt_type); |
| ret = -EINVAL; |
| goto exit_error; |
| } |
| |
| if (skb->len < plen) { |
| bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x", |
| pkt_type); |
| ret = -EILSEQ; |
| goto exit_error; |
| } |
| |
| bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen); |
| |
| hci_skb_pkt_type(skb) = pkt_type; |
| hdev->stat.byte_rx += plen; |
| skb_trim(skb, plen); |
| |
| if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT) |
| ret = btintel_pcie_recv_event(hdev, skb); |
| else |
| ret = hci_recv_frame(hdev, skb); |
| skb = NULL; /* skb is freed in the callee */ |
| |
| exit_error: |
| if (skb) |
| kfree_skb(skb); |
| |
| if (ret) |
| hdev->stat.err_rx++; |
| |
| spin_unlock(&data->hci_rx_lock); |
| |
| return ret; |
| } |
| |
| static void btintel_pcie_read_hwexp(struct btintel_pcie_data *data) |
| { |
| int len, err, offset, pending; |
| struct sk_buff *skb; |
| u8 *buf, prefix[64]; |
| u32 addr, val; |
| u16 pkt_len; |
| |
| struct tlv { |
| u8 type; |
| __le16 len; |
| u8 val[]; |
| } __packed; |
| |
| struct tlv *tlv; |
| |
| switch (data->dmp_hdr.cnvi_top & 0xfff) { |
| case BTINTEL_CNVI_BLAZARI: |
| case BTINTEL_CNVI_BLAZARIW: |
| /* only from step B0 onwards */ |
| if (INTEL_CNVX_TOP_STEP(data->dmp_hdr.cnvi_top) != 0x01) |
| return; |
| len = BTINTEL_PCIE_BLZR_HWEXP_SIZE; /* exception data length */ |
| addr = BTINTEL_PCIE_BLZR_HWEXP_DMP_ADDR; |
| break; |
| case BTINTEL_CNVI_SCP: |
| len = BTINTEL_PCIE_SCP_HWEXP_SIZE; |
| addr = BTINTEL_PCIE_SCP_HWEXP_DMP_ADDR; |
| break; |
| default: |
| bt_dev_err(data->hdev, "Unsupported cnvi 0x%8.8x", data->dmp_hdr.cnvi_top); |
| return; |
| } |
| |
| buf = kzalloc(len, GFP_KERNEL); |
| if (!buf) |
| goto exit_on_error; |
| |
| btintel_pcie_mac_init(data); |
| |
| err = btintel_pcie_read_device_mem(data, buf, addr, len); |
| if (err) |
| goto exit_on_error; |
| |
| val = get_unaligned_le32(buf); |
| if (val != BTINTEL_PCIE_MAGIC_NUM) { |
| bt_dev_err(data->hdev, "Invalid exception dump signature: 0x%8.8x", |
| val); |
| goto exit_on_error; |
| } |
| |
| snprintf(prefix, sizeof(prefix), "Bluetooth: %s: ", bt_dev_name(data->hdev)); |
| |
| offset = 4; |
| do { |
| pending = len - offset; |
| if (pending < sizeof(*tlv)) |
| break; |
| tlv = (struct tlv *)(buf + offset); |
| |
| /* If type == 0, then there are no more TLVs to be parsed */ |
| if (!tlv->type) { |
| bt_dev_dbg(data->hdev, "Invalid TLV type 0"); |
| break; |
| } |
| pkt_len = le16_to_cpu(tlv->len); |
| offset += sizeof(*tlv); |
| pending = len - offset; |
| if (pkt_len > pending) |
| break; |
| |
| offset += pkt_len; |
| |
| /* Only TLVs of type == 1 are HCI events, no need to process other |
| * TLVs |
| */ |
| if (tlv->type != 1) |
| continue; |
| |
| bt_dev_dbg(data->hdev, "TLV packet length: %u", pkt_len); |
| if (pkt_len > HCI_MAX_EVENT_SIZE) |
| break; |
| skb = bt_skb_alloc(pkt_len, GFP_KERNEL); |
| if (!skb) |
| goto exit_on_error; |
| hci_skb_pkt_type(skb) = HCI_EVENT_PKT; |
| skb_put_data(skb, tlv->val, pkt_len); |
| |
| /* copy Intel specific pcie packet type */ |
| val = BTINTEL_PCIE_HCI_EVT_PKT; |
| memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &val, |
| BTINTEL_PCIE_HCI_TYPE_LEN); |
| |
| print_hex_dump(KERN_DEBUG, prefix, DUMP_PREFIX_OFFSET, 16, 1, |
| tlv->val, pkt_len, false); |
| |
| btintel_pcie_recv_frame(data, skb); |
| } while (offset < len); |
| |
| exit_on_error: |
| kfree(buf); |
| } |
| |
| static void btintel_pcie_msix_hw_exp_handler(struct btintel_pcie_data *data) |
| { |
| bt_dev_err(data->hdev, "Received hw exception interrupt"); |
| |
| if (test_and_set_bit(BTINTEL_PCIE_CORE_HALTED, &data->flags)) |
| return; |
| |
| if (test_and_set_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags)) |
| return; |
| |
| /* Trigger device core dump when there is HW exception */ |
| if (!test_and_set_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags)) |
| data->dmp_hdr.trigger_reason = BTINTEL_PCIE_TRIGGER_REASON_FW_ASSERT; |
| |
| queue_work(data->workqueue, &data->rx_work); |
| } |
| |
| static void btintel_pcie_rx_work(struct work_struct *work) |
| { |
| struct btintel_pcie_data *data = container_of(work, |
| struct btintel_pcie_data, rx_work); |
| struct sk_buff *skb; |
| |
| if (test_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags)) { |
| /* Unlike usb products, controller will not send hardware |
| * exception event on exception. Instead controller writes the |
| * hardware event to device memory along with optional debug |
| * events, raises MSIX and halts. Driver shall read the |
| * exception event from device memory and passes it stack for |
| * further processing. |
| */ |
| btintel_pcie_read_hwexp(data); |
| clear_bit(BTINTEL_PCIE_HWEXP_INPROGRESS, &data->flags); |
| } |
| |
| if (test_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags)) { |
| btintel_pcie_dump_traces(data->hdev); |
| clear_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags); |
| } |
| |
| /* Process the sk_buf in queue and send to the HCI layer */ |
| while ((skb = skb_dequeue(&data->rx_skb_q))) { |
| btintel_pcie_recv_frame(data, skb); |
| } |
| } |
| |
| /* create sk_buff with data and save it to queue and start RX work */ |
| static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status, |
| void *buf) |
| { |
| int ret, len; |
| struct rfh_hdr *rfh_hdr; |
| struct sk_buff *skb; |
| |
| rfh_hdr = buf; |
| |
| len = rfh_hdr->packet_len; |
| if (len <= 0) { |
| ret = -EINVAL; |
| goto resubmit; |
| } |
| |
| /* Remove RFH header */ |
| buf += sizeof(*rfh_hdr); |
| |
| skb = alloc_skb(len, GFP_ATOMIC); |
| if (!skb) |
| goto resubmit; |
| |
| skb_put_data(skb, buf, len); |
| skb_queue_tail(&data->rx_skb_q, skb); |
| queue_work(data->workqueue, &data->rx_work); |
| |
| resubmit: |
| ret = btintel_pcie_submit_rx(data); |
| |
| return ret; |
| } |
| |
| /* Handles the MSI-X interrupt for rx queue 1 which is for RX */ |
| static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data) |
| { |
| u16 cr_hia, cr_tia; |
| struct rxq *rxq; |
| struct urbd1 *urbd1; |
| struct data_buf *buf; |
| int ret; |
| struct hci_dev *hdev = data->hdev; |
| |
| cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM]; |
| cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM]; |
| |
| bt_dev_dbg(hdev, "RXQ: cr_hia: %u cr_tia: %u", cr_hia, cr_tia); |
| |
| /* Check CR_TIA and CR_HIA for change */ |
| if (cr_tia == cr_hia) |
| return; |
| |
| rxq = &data->rxq; |
| |
| /* The firmware sends multiple CD in a single MSI-X and it needs to |
| * process all received CDs in this interrupt. |
| */ |
| while (cr_tia != cr_hia) { |
| urbd1 = &rxq->urbd1s[cr_tia]; |
| ipc_print_urbd1(data->hdev, urbd1, cr_tia); |
| |
| buf = &rxq->bufs[urbd1->frbd_tag]; |
| if (!buf) { |
| bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d", |
| urbd1->frbd_tag); |
| return; |
| } |
| |
| ret = btintel_pcie_submit_rx_work(data, urbd1->status, |
| buf->data); |
| if (ret) { |
| bt_dev_err(hdev, "RXQ: failed to submit rx request"); |
| return; |
| } |
| |
| cr_tia = (cr_tia + 1) % rxq->count; |
| data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia; |
| ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM); |
| } |
| } |
| |
| static irqreturn_t btintel_pcie_msix_isr(int irq, void *data) |
| { |
| return IRQ_WAKE_THREAD; |
| } |
| |
| static inline bool btintel_pcie_is_rxq_empty(struct btintel_pcie_data *data) |
| { |
| return data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM] == data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM]; |
| } |
| |
| static inline bool btintel_pcie_is_txackq_empty(struct btintel_pcie_data *data) |
| { |
| return data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] == data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM]; |
| } |
| |
| static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id) |
| { |
| struct msix_entry *entry = dev_id; |
| struct btintel_pcie_data *data = btintel_pcie_get_data(entry); |
| u32 intr_fh, intr_hw; |
| |
| spin_lock(&data->irq_lock); |
| intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES); |
| intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES); |
| |
| /* Clear causes registers to avoid being handling the same cause */ |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh); |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw); |
| spin_unlock(&data->irq_lock); |
| |
| if (unlikely(!(intr_fh | intr_hw))) { |
| /* Ignore interrupt, inta == 0 */ |
| return IRQ_NONE; |
| } |
| |
| /* This interrupt is raised when there is an hardware exception */ |
| if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_HWEXP) |
| btintel_pcie_msix_hw_exp_handler(data); |
| |
| /* This interrupt is triggered by the firmware after updating |
| * boot_stage register and image_response register |
| */ |
| if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0) |
| btintel_pcie_msix_gp0_handler(data); |
| |
| /* For TX */ |
| if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0) { |
| btintel_pcie_msix_tx_handle(data); |
| if (!btintel_pcie_is_rxq_empty(data)) |
| btintel_pcie_msix_rx_handle(data); |
| } |
| |
| /* For RX */ |
| if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1) { |
| btintel_pcie_msix_rx_handle(data); |
| if (!btintel_pcie_is_txackq_empty(data)) |
| btintel_pcie_msix_tx_handle(data); |
| } |
| |
| /* |
| * Before sending the interrupt the HW disables it to prevent a nested |
| * interrupt. This is done by writing 1 to the corresponding bit in |
| * the mask register. After handling the interrupt, it should be |
| * re-enabled by clearing this bit. This register is defined as write 1 |
| * clear (W1C) register, meaning that it's cleared by writing 1 |
| * to the bit. |
| */ |
| btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST, |
| BIT(entry->entry)); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* This function requests the irq for MSI-X and registers the handlers per irq. |
| * Currently, it requests only 1 irq for all interrupt causes. |
| */ |
| static int btintel_pcie_setup_irq(struct btintel_pcie_data *data) |
| { |
| int err; |
| int num_irqs, i; |
| |
| for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++) |
| data->msix_entries[i].entry = i; |
| |
| num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN, |
| BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX); |
| if (num_irqs < 0) |
| return num_irqs; |
| |
| data->alloc_vecs = num_irqs; |
| data->msix_enabled = 1; |
| data->def_irq = 0; |
| |
| /* setup irq handler */ |
| for (i = 0; i < data->alloc_vecs; i++) { |
| struct msix_entry *msix_entry; |
| |
| msix_entry = &data->msix_entries[i]; |
| msix_entry->vector = pci_irq_vector(data->pdev, i); |
| |
| err = devm_request_threaded_irq(&data->pdev->dev, |
| msix_entry->vector, |
| btintel_pcie_msix_isr, |
| btintel_pcie_irq_msix_handler, |
| IRQF_SHARED, |
| KBUILD_MODNAME, |
| msix_entry); |
| if (err) { |
| pci_free_irq_vectors(data->pdev); |
| data->alloc_vecs = 0; |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| struct btintel_pcie_causes_list { |
| u32 cause; |
| u32 mask_reg; |
| u8 cause_num; |
| }; |
| |
| static struct btintel_pcie_causes_list causes_list[] = { |
| { BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x00 }, |
| { BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x01 }, |
| { BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, 0x20 }, |
| { BTINTEL_PCIE_MSIX_HW_INT_CAUSES_HWEXP, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, 0x23 }, |
| }; |
| |
| /* This function configures the interrupt masks for both HW_INT_CAUSES and |
| * FH_INT_CAUSES which are meaningful to us. |
| * |
| * After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver |
| * need to call this function again to configure since the masks |
| * are reset to 0xFFFFFFFF after reset. |
| */ |
| static void btintel_pcie_config_msix(struct btintel_pcie_data *data) |
| { |
| int i; |
| int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE; |
| |
| /* Set Non Auto Clear Cause */ |
| for (i = 0; i < ARRAY_SIZE(causes_list); i++) { |
| btintel_pcie_wr_reg8(data, |
| BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num), |
| val); |
| btintel_pcie_clr_reg_bits(data, |
| causes_list[i].mask_reg, |
| causes_list[i].cause); |
| } |
| |
| /* Save the initial interrupt mask */ |
| data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK); |
| data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK); |
| } |
| |
| static int btintel_pcie_config_pcie(struct pci_dev *pdev, |
| struct btintel_pcie_data *data) |
| { |
| int err; |
| |
| err = pcim_enable_device(pdev); |
| if (err) |
| return err; |
| |
| pci_set_master(pdev); |
| |
| err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); |
| if (err) { |
| err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); |
| if (err) |
| return err; |
| } |
| |
| data->base_addr = pcim_iomap_region(pdev, 0, KBUILD_MODNAME); |
| if (IS_ERR(data->base_addr)) |
| return PTR_ERR(data->base_addr); |
| |
| err = btintel_pcie_setup_irq(data); |
| if (err) |
| return err; |
| |
| /* Configure MSI-X with causes list */ |
| btintel_pcie_config_msix(data); |
| |
| return 0; |
| } |
| |
| static void btintel_pcie_init_ci(struct btintel_pcie_data *data, |
| struct ctx_info *ci) |
| { |
| ci->version = 0x1; |
| ci->size = sizeof(*ci); |
| ci->config = 0x0000; |
| ci->addr_cr_hia = data->ia.cr_hia_p_addr; |
| ci->addr_tr_tia = data->ia.tr_tia_p_addr; |
| ci->addr_cr_tia = data->ia.cr_tia_p_addr; |
| ci->addr_tr_hia = data->ia.tr_hia_p_addr; |
| ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES; |
| ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES; |
| ci->addr_urbdq0 = data->txq.urbd0s_p_addr; |
| ci->addr_tfdq = data->txq.tfds_p_addr; |
| ci->num_tfdq = data->txq.count; |
| ci->num_urbdq0 = data->txq.count; |
| ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM; |
| ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM; |
| ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K; |
| ci->addr_frbdq = data->rxq.frbds_p_addr; |
| ci->num_frbdq = data->rxq.count; |
| ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM; |
| ci->addr_urbdq1 = data->rxq.urbd1s_p_addr; |
| ci->num_urbdq1 = data->rxq.count; |
| ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM; |
| |
| ci->dbg_output_mode = 0x01; |
| ci->dbgc_addr = data->dbgc.frag_p_addr; |
| ci->dbgc_size = data->dbgc.frag_size; |
| ci->dbg_preset = 0x00; |
| } |
| |
| static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data, |
| struct txq *txq) |
| { |
| /* Free data buffers first */ |
| dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE, |
| txq->buf_v_addr, txq->buf_p_addr); |
| kfree(txq->bufs); |
| } |
| |
| static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data, |
| struct txq *txq) |
| { |
| int i; |
| struct data_buf *buf; |
| |
| /* Allocate the same number of buffers as the descriptor */ |
| txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL); |
| if (!txq->bufs) |
| return -ENOMEM; |
| |
| /* Allocate full chunk of data buffer for DMA first and do indexing and |
| * initialization next, so it can be freed easily |
| */ |
| txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev, |
| txq->count * BTINTEL_PCIE_BUFFER_SIZE, |
| &txq->buf_p_addr, |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!txq->buf_v_addr) { |
| kfree(txq->bufs); |
| return -ENOMEM; |
| } |
| |
| /* Setup the allocated DMA buffer to bufs. Each data_buf should |
| * have virtual address and physical address |
| */ |
| for (i = 0; i < txq->count; i++) { |
| buf = &txq->bufs[i]; |
| buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); |
| buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); |
| } |
| |
| return 0; |
| } |
| |
| static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data, |
| struct rxq *rxq) |
| { |
| /* Free data buffers first */ |
| dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE, |
| rxq->buf_v_addr, rxq->buf_p_addr); |
| kfree(rxq->bufs); |
| } |
| |
| static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data, |
| struct rxq *rxq) |
| { |
| int i; |
| struct data_buf *buf; |
| |
| /* Allocate the same number of buffers as the descriptor */ |
| rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL); |
| if (!rxq->bufs) |
| return -ENOMEM; |
| |
| /* Allocate full chunk of data buffer for DMA first and do indexing and |
| * initialization next, so it can be freed easily |
| */ |
| rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev, |
| rxq->count * BTINTEL_PCIE_BUFFER_SIZE, |
| &rxq->buf_p_addr, |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!rxq->buf_v_addr) { |
| kfree(rxq->bufs); |
| return -ENOMEM; |
| } |
| |
| /* Setup the allocated DMA buffer to bufs. Each data_buf should |
| * have virtual address and physical address |
| */ |
| for (i = 0; i < rxq->count; i++) { |
| buf = &rxq->bufs[i]; |
| buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); |
| buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE); |
| } |
| |
| return 0; |
| } |
| |
| static void btintel_pcie_setup_ia(struct btintel_pcie_data *data, |
| dma_addr_t p_addr, void *v_addr, |
| struct ia *ia) |
| { |
| /* TR Head Index Array */ |
| ia->tr_hia_p_addr = p_addr; |
| ia->tr_hia = v_addr; |
| |
| /* TR Tail Index Array */ |
| ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES; |
| ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES; |
| |
| /* CR Head index Array */ |
| ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2); |
| ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2); |
| |
| /* CR Tail Index Array */ |
| ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3); |
| ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3); |
| } |
| |
| static void btintel_pcie_free(struct btintel_pcie_data *data) |
| { |
| btintel_pcie_free_rxq_bufs(data, &data->rxq); |
| btintel_pcie_free_txq_bufs(data, &data->txq); |
| |
| dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr); |
| dma_pool_destroy(data->dma_pool); |
| } |
| |
| /* Allocate tx and rx queues, any related data structures and buffers. |
| */ |
| static int btintel_pcie_alloc(struct btintel_pcie_data *data) |
| { |
| int err = 0; |
| size_t total; |
| dma_addr_t p_addr; |
| void *v_addr; |
| |
| /* Allocate the chunk of DMA memory for descriptors, index array, and |
| * context information, instead of allocating individually. |
| * The DMA memory for data buffer is allocated while setting up the |
| * each queue. |
| * |
| * Total size is sum of the following |
| * + size of TFD * Number of descriptors in queue |
| * + size of URBD0 * Number of descriptors in queue |
| * + size of FRBD * Number of descriptors in queue |
| * + size of URBD1 * Number of descriptors in queue |
| * + size of index * Number of queues(2) * type of index array(4) |
| * + size of context information |
| */ |
| total = (sizeof(struct tfd) + sizeof(struct urbd0) + sizeof(struct frbd) |
| + sizeof(struct urbd1)) * BTINTEL_DESCS_COUNT; |
| |
| /* Add the sum of size of index array and size of ci struct */ |
| total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info); |
| |
| /* Allocate DMA Pool */ |
| data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev, |
| total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0); |
| if (!data->dma_pool) { |
| err = -ENOMEM; |
| goto exit_error; |
| } |
| |
| v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN, |
| &p_addr); |
| if (!v_addr) { |
| dma_pool_destroy(data->dma_pool); |
| err = -ENOMEM; |
| goto exit_error; |
| } |
| |
| data->dma_p_addr = p_addr; |
| data->dma_v_addr = v_addr; |
| |
| /* Setup descriptor count */ |
| data->txq.count = BTINTEL_DESCS_COUNT; |
| data->rxq.count = BTINTEL_DESCS_COUNT; |
| |
| /* Setup tfds */ |
| data->txq.tfds_p_addr = p_addr; |
| data->txq.tfds = v_addr; |
| |
| p_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT); |
| v_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT); |
| |
| /* Setup urbd0 */ |
| data->txq.urbd0s_p_addr = p_addr; |
| data->txq.urbd0s = v_addr; |
| |
| p_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT); |
| v_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT); |
| |
| /* Setup FRBD*/ |
| data->rxq.frbds_p_addr = p_addr; |
| data->rxq.frbds = v_addr; |
| |
| p_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT); |
| v_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT); |
| |
| /* Setup urbd1 */ |
| data->rxq.urbd1s_p_addr = p_addr; |
| data->rxq.urbd1s = v_addr; |
| |
| p_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT); |
| v_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT); |
| |
| /* Setup data buffers for txq */ |
| err = btintel_pcie_setup_txq_bufs(data, &data->txq); |
| if (err) |
| goto exit_error_pool; |
| |
| /* Setup data buffers for rxq */ |
| err = btintel_pcie_setup_rxq_bufs(data, &data->rxq); |
| if (err) |
| goto exit_error_txq; |
| |
| /* Setup Index Array */ |
| btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia); |
| |
| /* Setup data buffers for dbgc */ |
| err = btintel_pcie_setup_dbgc(data); |
| if (err) |
| goto exit_error_txq; |
| |
| /* Setup Context Information */ |
| p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4; |
| v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4; |
| |
| data->ci = v_addr; |
| data->ci_p_addr = p_addr; |
| |
| /* Initialize the CI */ |
| btintel_pcie_init_ci(data, data->ci); |
| |
| return 0; |
| |
| exit_error_txq: |
| btintel_pcie_free_txq_bufs(data, &data->txq); |
| exit_error_pool: |
| dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr); |
| dma_pool_destroy(data->dma_pool); |
| exit_error: |
| return err; |
| } |
| |
| static int btintel_pcie_open(struct hci_dev *hdev) |
| { |
| bt_dev_dbg(hdev, ""); |
| |
| return 0; |
| } |
| |
| static int btintel_pcie_close(struct hci_dev *hdev) |
| { |
| bt_dev_dbg(hdev, ""); |
| |
| return 0; |
| } |
| |
| static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode) |
| { |
| struct sk_buff *skb; |
| struct hci_event_hdr *hdr; |
| struct hci_ev_cmd_complete *evt; |
| |
| skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL); |
| if (!skb) |
| return -ENOMEM; |
| |
| hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr)); |
| hdr->evt = HCI_EV_CMD_COMPLETE; |
| hdr->plen = sizeof(*evt) + 1; |
| |
| evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt)); |
| evt->ncmd = 0x01; |
| evt->opcode = cpu_to_le16(opcode); |
| |
| *(u8 *)skb_put(skb, 1) = 0x00; |
| |
| hci_skb_pkt_type(skb) = HCI_EVENT_PKT; |
| |
| return hci_recv_frame(hdev, skb); |
| } |
| |
| static int btintel_pcie_send_frame(struct hci_dev *hdev, |
| struct sk_buff *skb) |
| { |
| struct btintel_pcie_data *data = hci_get_drvdata(hdev); |
| struct hci_command_hdr *cmd; |
| __u16 opcode = ~0; |
| int ret; |
| u32 type; |
| u32 old_ctxt; |
| |
| /* Due to the fw limitation, the type header of the packet should be |
| * 4 bytes unlike 1 byte for UART. In UART, the firmware can read |
| * the first byte to get the packet type and redirect the rest of data |
| * packet to the right handler. |
| * |
| * But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data |
| * from DMA memory and by the time it reads the first 4 bytes, it has |
| * already consumed some part of packet. Thus the packet type indicator |
| * for iBT PCIe is 4 bytes. |
| * |
| * Luckily, when HCI core creates the skb, it allocates 8 bytes of |
| * head room for profile and driver use, and before sending the data |
| * to the device, append the iBT PCIe packet type in the front. |
| */ |
| switch (hci_skb_pkt_type(skb)) { |
| case HCI_COMMAND_PKT: |
| type = BTINTEL_PCIE_HCI_CMD_PKT; |
| cmd = (void *)skb->data; |
| opcode = le16_to_cpu(cmd->opcode); |
| if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) { |
| struct hci_command_hdr *cmd = (void *)skb->data; |
| __u16 opcode = le16_to_cpu(cmd->opcode); |
| |
| /* When the 0xfc01 command is issued to boot into |
| * the operational firmware, it will actually not |
| * send a command complete event. To keep the flow |
| * control working inject that event here. |
| */ |
| if (opcode == 0xfc01) |
| btintel_pcie_inject_cmd_complete(hdev, opcode); |
| } |
| /* Firmware raises alive interrupt on HCI_OP_RESET */ |
| if (opcode == HCI_OP_RESET) |
| data->gp0_received = false; |
| |
| hdev->stat.cmd_tx++; |
| break; |
| case HCI_ACLDATA_PKT: |
| type = BTINTEL_PCIE_HCI_ACL_PKT; |
| hdev->stat.acl_tx++; |
| break; |
| case HCI_SCODATA_PKT: |
| type = BTINTEL_PCIE_HCI_SCO_PKT; |
| hdev->stat.sco_tx++; |
| break; |
| case HCI_ISODATA_PKT: |
| type = BTINTEL_PCIE_HCI_ISO_PKT; |
| break; |
| default: |
| bt_dev_err(hdev, "Unknown HCI packet type"); |
| return -EILSEQ; |
| } |
| memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &type, |
| BTINTEL_PCIE_HCI_TYPE_LEN); |
| |
| ret = btintel_pcie_send_sync(data, skb); |
| if (ret) { |
| hdev->stat.err_tx++; |
| bt_dev_err(hdev, "Failed to send frame (%d)", ret); |
| goto exit_error; |
| } |
| |
| if (type == BTINTEL_PCIE_HCI_CMD_PKT && |
| (opcode == HCI_OP_RESET || opcode == 0xfc01)) { |
| old_ctxt = data->alive_intr_ctxt; |
| data->alive_intr_ctxt = |
| (opcode == 0xfc01 ? BTINTEL_PCIE_INTEL_HCI_RESET1 : |
| BTINTEL_PCIE_HCI_RESET); |
| bt_dev_dbg(data->hdev, "sent cmd: 0x%4.4x alive context changed: %s -> %s", |
| opcode, btintel_pcie_alivectxt_state2str(old_ctxt), |
| btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt)); |
| if (opcode == HCI_OP_RESET) { |
| ret = wait_event_timeout(data->gp0_wait_q, |
| data->gp0_received, |
| msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS)); |
| if (!ret) { |
| hdev->stat.err_tx++; |
| bt_dev_err(hdev, "No alive interrupt received for %s", |
| btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt)); |
| ret = -ETIME; |
| goto exit_error; |
| } |
| } |
| } |
| hdev->stat.byte_tx += skb->len; |
| kfree_skb(skb); |
| |
| exit_error: |
| return ret; |
| } |
| |
| static void btintel_pcie_release_hdev(struct btintel_pcie_data *data) |
| { |
| struct hci_dev *hdev; |
| |
| hdev = data->hdev; |
| hci_unregister_dev(hdev); |
| hci_free_dev(hdev); |
| data->hdev = NULL; |
| } |
| |
| static int btintel_pcie_setup_internal(struct hci_dev *hdev) |
| { |
| struct btintel_pcie_data *data = hci_get_drvdata(hdev); |
| const u8 param[1] = { 0xFF }; |
| struct intel_version_tlv ver_tlv; |
| struct sk_buff *skb; |
| int err; |
| |
| BT_DBG("%s", hdev->name); |
| |
| skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Reading Intel version command failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| |
| /* Check the status */ |
| if (skb->data[0]) { |
| bt_dev_err(hdev, "Intel Read Version command failed (%02x)", |
| skb->data[0]); |
| err = -EIO; |
| goto exit_error; |
| } |
| |
| /* Apply the common HCI quirks for Intel device */ |
| set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks); |
| set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); |
| set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks); |
| |
| /* Set up the quality report callback for Intel devices */ |
| hdev->set_quality_report = btintel_set_quality_report; |
| |
| memset(&ver_tlv, 0, sizeof(ver_tlv)); |
| /* For TLV type device, parse the tlv data */ |
| err = btintel_parse_version_tlv(hdev, &ver_tlv, skb); |
| if (err) { |
| bt_dev_err(hdev, "Failed to parse TLV version information"); |
| goto exit_error; |
| } |
| |
| switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) { |
| case 0x37: |
| break; |
| default: |
| bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", |
| INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)); |
| err = -EINVAL; |
| goto exit_error; |
| } |
| |
| /* Check for supported iBT hardware variants of this firmware |
| * loading method. |
| * |
| * This check has been put in place to ensure correct forward |
| * compatibility options when newer hardware variants come |
| * along. |
| */ |
| switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) { |
| case 0x1e: /* BzrI */ |
| case 0x1f: /* ScP */ |
| /* Display version information of TLV type */ |
| btintel_version_info_tlv(hdev, &ver_tlv); |
| |
| /* Apply the device specific HCI quirks for TLV based devices |
| * |
| * All TLV based devices support WBS |
| */ |
| set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); |
| |
| /* Setup MSFT Extension support */ |
| btintel_set_msft_opcode(hdev, |
| INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); |
| |
| err = btintel_bootloader_setup_tlv(hdev, &ver_tlv); |
| if (err) |
| goto exit_error; |
| break; |
| default: |
| bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", |
| INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); |
| err = -EINVAL; |
| goto exit_error; |
| break; |
| } |
| |
| data->dmp_hdr.cnvi_top = ver_tlv.cnvi_top; |
| data->dmp_hdr.cnvr_top = ver_tlv.cnvr_top; |
| data->dmp_hdr.fw_timestamp = ver_tlv.timestamp; |
| data->dmp_hdr.fw_build_type = ver_tlv.build_type; |
| data->dmp_hdr.fw_build_num = ver_tlv.build_num; |
| data->dmp_hdr.cnvi_bt = ver_tlv.cnvi_bt; |
| |
| if (ver_tlv.img_type == 0x02 || ver_tlv.img_type == 0x03) |
| data->dmp_hdr.fw_git_sha1 = ver_tlv.git_sha1; |
| |
| err = hci_devcd_register(hdev, btintel_pcie_dump_traces, btintel_pcie_dump_hdr, |
| btintel_pcie_dump_notify); |
| if (err) { |
| bt_dev_err(hdev, "Failed to register coredump (%d)", err); |
| goto exit_error; |
| } |
| |
| btintel_print_fseq_info(hdev); |
| exit_error: |
| kfree_skb(skb); |
| |
| return err; |
| } |
| |
| static int btintel_pcie_setup(struct hci_dev *hdev) |
| { |
| int err, fw_dl_retry = 0; |
| struct btintel_pcie_data *data = hci_get_drvdata(hdev); |
| |
| while ((err = btintel_pcie_setup_internal(hdev)) && fw_dl_retry++ < 1) { |
| bt_dev_err(hdev, "Firmware download retry count: %d", |
| fw_dl_retry); |
| err = btintel_pcie_reset_bt(data); |
| if (err) { |
| bt_dev_err(hdev, "Failed to do shr reset: %d", err); |
| break; |
| } |
| usleep_range(10000, 12000); |
| btintel_pcie_reset_ia(data); |
| btintel_pcie_config_msix(data); |
| err = btintel_pcie_enable_bt(data); |
| if (err) { |
| bt_dev_err(hdev, "Failed to enable hardware: %d", err); |
| break; |
| } |
| btintel_pcie_start_rx(data); |
| } |
| return err; |
| } |
| |
| static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data) |
| { |
| int err; |
| struct hci_dev *hdev; |
| |
| hdev = hci_alloc_dev_priv(sizeof(struct btintel_data)); |
| if (!hdev) |
| return -ENOMEM; |
| |
| hdev->bus = HCI_PCI; |
| hci_set_drvdata(hdev, data); |
| |
| data->hdev = hdev; |
| SET_HCIDEV_DEV(hdev, &data->pdev->dev); |
| |
| hdev->manufacturer = 2; |
| hdev->open = btintel_pcie_open; |
| hdev->close = btintel_pcie_close; |
| hdev->send = btintel_pcie_send_frame; |
| hdev->setup = btintel_pcie_setup; |
| hdev->shutdown = btintel_shutdown_combined; |
| hdev->hw_error = btintel_hw_error; |
| hdev->set_diag = btintel_set_diag; |
| hdev->set_bdaddr = btintel_set_bdaddr; |
| |
| err = hci_register_dev(hdev); |
| if (err < 0) { |
| BT_ERR("Failed to register to hdev (%d)", err); |
| goto exit_error; |
| } |
| |
| data->dmp_hdr.driver_name = KBUILD_MODNAME; |
| return 0; |
| |
| exit_error: |
| hci_free_dev(hdev); |
| return err; |
| } |
| |
| static int btintel_pcie_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| int err; |
| struct btintel_pcie_data *data; |
| |
| if (!pdev) |
| return -ENODEV; |
| |
| data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| data->pdev = pdev; |
| |
| spin_lock_init(&data->irq_lock); |
| spin_lock_init(&data->hci_rx_lock); |
| |
| init_waitqueue_head(&data->gp0_wait_q); |
| data->gp0_received = false; |
| |
| init_waitqueue_head(&data->tx_wait_q); |
| data->tx_wait_done = false; |
| |
| data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI); |
| if (!data->workqueue) |
| return -ENOMEM; |
| |
| skb_queue_head_init(&data->rx_skb_q); |
| INIT_WORK(&data->rx_work, btintel_pcie_rx_work); |
| |
| data->boot_stage_cache = 0x00; |
| data->img_resp_cache = 0x00; |
| |
| err = btintel_pcie_config_pcie(pdev, data); |
| if (err) |
| goto exit_error; |
| |
| pci_set_drvdata(pdev, data); |
| |
| err = btintel_pcie_alloc(data); |
| if (err) |
| goto exit_error; |
| |
| err = btintel_pcie_enable_bt(data); |
| if (err) |
| goto exit_error; |
| |
| /* CNV information (CNVi and CNVr) is in CSR */ |
| data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG); |
| |
| data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG); |
| |
| err = btintel_pcie_start_rx(data); |
| if (err) |
| goto exit_error; |
| |
| err = btintel_pcie_setup_hdev(data); |
| if (err) |
| goto exit_error; |
| |
| bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi, |
| data->cnvr); |
| return 0; |
| |
| exit_error: |
| /* reset device before exit */ |
| btintel_pcie_reset_bt(data); |
| |
| pci_clear_master(pdev); |
| |
| pci_set_drvdata(pdev, NULL); |
| |
| return err; |
| } |
| |
| static void btintel_pcie_remove(struct pci_dev *pdev) |
| { |
| struct btintel_pcie_data *data; |
| |
| data = pci_get_drvdata(pdev); |
| |
| btintel_pcie_reset_bt(data); |
| for (int i = 0; i < data->alloc_vecs; i++) { |
| struct msix_entry *msix_entry; |
| |
| msix_entry = &data->msix_entries[i]; |
| free_irq(msix_entry->vector, msix_entry); |
| } |
| |
| pci_free_irq_vectors(pdev); |
| |
| btintel_pcie_release_hdev(data); |
| |
| flush_work(&data->rx_work); |
| |
| destroy_workqueue(data->workqueue); |
| |
| btintel_pcie_free(data); |
| |
| pci_clear_master(pdev); |
| |
| pci_set_drvdata(pdev, NULL); |
| } |
| |
| #ifdef CONFIG_DEV_COREDUMP |
| static void btintel_pcie_coredump(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct btintel_pcie_data *data = pci_get_drvdata(pdev); |
| |
| if (test_and_set_bit(BTINTEL_PCIE_COREDUMP_INPROGRESS, &data->flags)) |
| return; |
| |
| data->dmp_hdr.trigger_reason = BTINTEL_PCIE_TRIGGER_REASON_USER_TRIGGER; |
| queue_work(data->workqueue, &data->rx_work); |
| } |
| #endif |
| |
| static struct pci_driver btintel_pcie_driver = { |
| .name = KBUILD_MODNAME, |
| .id_table = btintel_pcie_table, |
| .probe = btintel_pcie_probe, |
| .remove = btintel_pcie_remove, |
| #ifdef CONFIG_DEV_COREDUMP |
| .driver.coredump = btintel_pcie_coredump |
| #endif |
| }; |
| module_pci_driver(btintel_pcie_driver); |
| |
| MODULE_AUTHOR("Tedd Ho-Jeong An <[email protected]>"); |
| MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION); |
| MODULE_VERSION(VERSION); |
| MODULE_LICENSE("GPL"); |